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The purpose of this paper is to  utilize the genetic algorithm (GA) optimization method for 
structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search 
technique that mirrors biological adaptation. To verify the GA capabilities, other traditional 
optimization methods were used to generate results for comparison to the GA results, first for simple 
two-dimensional structures, and then for full-scale three-dimensional truss designs. 

I. Introduction 
HERE are many methods of optimization that are available for engineers. However, all of these methods have T their limitations. For example, numeric and gradient-based optimization start at an initial position and evaluate 

each surrounding point in the design space to determine the quickest direction to take towards the objective. These 
two methods work remarkably well for functions that are smooth and contain only one peak or valley. When many 
local maxima or minima exist, or if there are any plateaus within the design space, the search stops and thinking it is 
at the optimum point, however since each surrounding direction cannot improve the hnction, it only found a local 
optimum point. 

This is where genetic algorithms (GA)’ come into play. Developed by John Holland at the University of 
Michigan in the 1960’s, genetic algorithms are a guided random search technique that mirrors biological adaptation. 
Due to its randomness and the utilization of “populations,” GA’s are able to cover the entire design space through 
numerous “generations.” Each design variable’s (“gene”) value is converted to binary 1’s and O’s, which make up a 
“chromosome.” Fitness values are calculated using a fitness function (objective function). If the objective is to 
minimize the weight, lower fitness values are desirable. Chromosomes with these desirable values are given a 
higher percentage for crossover, a process in which genes in a chromosome are swapped with those from another 
chromosome,, thus giving the next generation improved solutions. Mutation is also introduced, where a 1 or 0 
within the chromosome chmges value in order to keep +e p~pula:ion ficsh and io prevent hard convergence. T’nis 
process is repeated until a convergence is obtained, or the number of iterations reach the specified number of 
generations. 

11. Simple Beam Optimization 
The first procedure was to investigate optimization of a simple structure using the MATLAB Genetic Algorithm 

(GA) Toolbox. To do this it was compared to conventional gradient-based optimization found in MATLAB. The 
problem that was investigated was a simple pin-pin beam (Figure 1) with a fixed length of 10 ft. There was a 1000 
lb load applied at one end. 

The objective was to minimize the weight while satisfying Euler buckling and material strength of 40000 psi. 
The material assumed for this problem as well as the following analysis was aluminum. The design variables were 
the cross sectional base (b) and height (h). For both the GA and gradient methods, a MATLAB m-file was created 
that would take into account the length and load, as well as the material properties. With each iteration of the GA 
process, the m-file would calculate the stress and the critical stress, and evaluate them against the constraints of not 
exceeding 40000 psi and that the stress would be less than the critical buckling stress. 
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Figure 1. Simple pinned-pinned beam. 

A fitness value was given for each b and h, and at the end of the process the b and h with the lowest values were 
selected as the final solution. After analysis, the results obtained for each method were comparable and the GA 
actually gave better results with an area of 1.2504 inches and a weight of 14.1757 pounds (Table 1). 

Table 1. Comparison of gradient-based and GA optimization results for simple beam cross section. 

I Ib (in.) 1 h (in.) ]Stress (psi) 1 Weight (Ib) 

IMATLAB ODt. I 1 .ooool 1.21001 829.75001 14.22961 

GA Toolbox I 1.0001 I 1.20531 829.58601 14.17571 

111. Ten-Bar Benchmark Truss Gradient-Based Optimization 
The focus was then moved to a benchmark problem that has been found in many optimization papers, a ten- 

member plane truss (Fig. 2). It contains two bays, each of 360 inches in length as well as height. There are two 
loads of 100 kip located at nodes 2 and 4, respectively. Due to the statically indeterminate nature of the problem, it 
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Figure 2. Ten-bar benchmark truss. 

was decided to use a finite element analysis of the truss for optimization. A modified version of a three-member 
truss found in the NASTRAN Optimization User’s Guide was used to optimize the truss. The objective, again, was 
to minimize the weight. The variables in this case were the cross sectional areas of each member. The allowable 
stress in each member could not exceed 25000 psi in tension or compression, and a nodal displacement constraint of 
plus or minus 2 in. on nodes 1 through 4 while nodes 5 and 6 are fixed. 
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From the results (Table 2). it is clear that the NASTRAN optimization gave values of area and weight (5078 Ib) that 
match those found in other papers using different methods. These results are encouraging and will be used later in 
the p q e r  tc c z q z r e  w:* q t i m i ~ a ~ c : :  ~ f t h e  szzx zsss iising L ~ c  ?V:ATLAB GA Tuvibox. 

Table 2. Comparison of member area optimization results for benchmark ten-bar truss. 

IV. Twenty-Five Bar Truss Optimization 
The next step was to optimize a more complex 25-bar three-dimensional truss (Figure 3). Also found in the 

NASTRAN Optimization User’s Guide, the objective again was to minimize the weight while satisfying certain 
constraints. The variables were the cross sectional areas of each member. However several of the members’ areas 
were linked together to give a total of 8 design variables. The stresses allowed in each member could not exceed 
40000 psi in tension or compression, and a nodal displacement constraint of plus or minus 0.35 inches on top points, 
nodes 3 and 4 was used. 

Figure 3. Twenty-five-bar truss model. 
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Similar results for the areas are found when comparing the results found in literature optimizing the same truss 
(Table 3) with those obtained by the NASTRAN optimization (Table 4). However, there is a slight discrepancy in 
v+,cight b~;iiieen ;hose foiirid iii thc Sc;f%are SOZOPT and the ?GASTKA?-i run. -, 1 ne reason for chis difference is 
that the optimization in Table 3 combines elements IO, 11, 12, and 13 while the NASTRAN optimization linked 
elements 10 and 1 1, and. 12 and 13 separate. 

A8 122,23,24,25 
Structural weight, pound 

Table 3. Comparison of optimization results from the literature for twenty-five bar truss. 

2.6767 
548.03 

Table 4. Gradient-based optimization results obtained using NASTRAN for twenty-five bar truss. 

V. NASTRAN Gradient-Based Optimization for 356-Member, SO-Meter Truss 
With confidence gained from simple benchmark trusses cited in the literature, the next step for gradient-based 

optimization was analysis of a nuclear electric vehicle-type truss. An 80-meter three-dimensional truss with square 
cross-section and tubular members was chosen. This size is reasonable for a future manned nuclear electric space 
vehicle. 

The boundary conditions were one end constrained, the other free, and an axial total load of 400 kN was applied. 
'Ihe member initial dimensions were 0.1016m (4") outer diameter, .003175m (.125") wall thickness, and the initial 
truss weight was 3361 kg. The objective of the Optimization was to minimize the truss weight, and keep member 
stresses below 1.72~10' N/m2 (25000 psi). The finite element model is shown in Fig. 4. 
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Figure 4. NASTRAN frnite element model of three-dimensional, 80m truss. 

For this optimization using NASTRAN (Method of Feasible Directions (MFD)), convergence obtained in 6 
design cycles. The axial 400 kN load resulted in high loads in the four long members, but very low loads in 
diagonal members. The MFD-sized members matched loading pattern on the truss. A summary of the results is 
listed below, and in Fig. 5 the design changes are shown for each interation cycle: 

Initial andfinal weights: 32,965 N and 5,327 N 
InitialUD/thichness: .lo16 m, .318 cm 
Final cross-sectional dimensiorzs for long members: All 0D:’thickness nearly .IO m. .I 8 cm 
Final dimensionsfor diagonal members: All at lower bounds of -01 m OD and .03 cm thickness 
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Figure 5. NASTRAN optimization results for 80-m truss. 
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VI. Ten-Bar Truss Optimization Using Genetic Algorithms 
Once the process was verified, it was decided to compare the optimization of the ten-member truss using 

!~.+m I M!U IO an oprirnization of the same truss using :he GA Toolbox of MATLAB. The GA program used for the 
simple beam optimization was modified to perform a loop in which each member of the truss would be optimized 
individually. Since the forces could not be solved with conventional methods, the forces within each member 
obtained from the NASTRAN optimization were used in the MATLAB GA run. A shown in Table 2, the results 
were comparable, however one  rea, member 4, had a significant difference than that found in the NASTRAN run, 
as well as the rest of the literature. 

. I . _ _ . - .  ..- 

VII. Truss Optimization within Nuclear Vehicle System-Level Optimization 
The work described in this paper is part of the Nuclear Electric Vehicle Optimization Toolset (NEVOT) Project, 

a collaborative effort among NASA Marshall Space Flight Center, DOE Oak Ridge National Laboratory, and DOD 
USAF Arnold Engineering Development Center’. The DAKOTA (Design Analysis Kit for Dtimization and 
- Terascale &plications) software was selected as the optimization tool to apply the GA technique in NEVOT. 
DAKOTA is a multilevel parallel object oriented framework for design optimization, parameter estimation, 
uncertainty quantification and sensitivity analysis. 

A simple first-principles truss module written in FORTRAN code was used in the initial vehicle optimizations. 
The module has as genes the material (limited to aluminum), number of long (main) members (3 to 5), outer 
diameter and wall thickness of the main members, and length of the main members. An approximate mass 
calculation is made by first computing the long member masses, then adding a 20 percent contribution for cross 
members. A simplified buckling load calculation is accomplished by (a) dividing the total applied axial load by the 
number of long (main) members, and (b) computing the critical Euler buckling load based on the length and cross- 
sectional properties of the main members. 

The computational architecture used in NEVOT vehicle system optimizations, including the truss structure 
module, is shown schematically in Fig. 6. The DAKOTA GA algorithm randomly generates an initial population of 
vehicles, including a random distribution of truss lengths between 20-250 meters, and manipulates the vehicle 
description input file so that NEVOT can assess the fitness of each “created” vehicle. The fitness assigned to an 
individual is used in the GA algorithm to determine its worth within the population and therefore its probability of 
survival. Crossovers and mutations from fit vehicles are randomly generated to see if more fit individuals might be 
created. It is possible that a vehicle’s subsystems, including the truss structure, will not be well matched to one 
another. There is no penalty for this except that the system as a whole receives a low fitness and is bred out of 
future populations. After many generations only the fittest vehicles remain. 

not meet real-world constraints. The hnction f (x) was implemented as a summation of vehicle mass f(x) and nine 
weighted constraints, as shown in Eq. (1): 

The vehicle fitness function focused both on minimizing vehicle mass and on penalizing vehicle designs that did 

The constraints included truss length among many others. Each of these parameters were provided by the vehicle 
chromosome to the modules shown in Fig. 6. The modules also calculate each of the nine parameters to be used as 
verification that the resulting vehicle chromosome actually meets the mission criteria. For example, the GA- 
generated parameters are provided to the configuration module that calculates a truss length. The configuration 
module ensures that the calculated truss length is long enough to keep the habitat module and other vehicle 
components behind the shadow of the reactor’s shield. If the GA-provided truss length is less than the truss length 
calculated by the truss module, then this vehicle design will be penalized. The constraint for the truss length gl(x) is 
calculated as follows: 

Representative vehicle optimization results are shown in Fig. 7, including the truss length that provided the 
optimal vehicle. 
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Figure 6. Schematic showing the relationship of the truss module to other subsystems within NEVOT. 
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Vehicie :"lass = 273762 kg 
Vehicle Fitness = 1264692 kg 
Truss Length = 167 m 
Front Shield Diameter = 3.82 m 
Total Shield Thickness = 3.1 12 m 
Power = 3931 kw 
Force Applied = 88.956 N 
Isp = 9000 sec 
Mass Flow Rate = .001008 kg/sec 
Starting Fuel Mass = 90661 kg 
Fuel Remaining = 18841 kg 
Radiator Area = 3026 m2 

Figure 7. Geometric view and parameters for the optimized vehicle, including truss length. 
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VI11. Conclusion 
From the results presented in this paper, it can be concluded that the GA method provide a feasible approach for 

struciurai optimizarion of a nuclear space vehicie. However, further work must be completed to further verify the 
results. Future work could also include general shape optimization of the vehicle truss structure, to more fully 
utilize the power of the GA. It is expected that the GA will give solutions and designs that could not be obtained 
using conventional optimization methods or traditional design techniques. 
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